
Swift: Primary Data Analysis for Next-gen sequencers

Nava Whiteford, Tom Skelly

September 19, 2008

Chapter 1

Introduction

Swift is an open source primary data analysis tool for next-gen sequence data, it is released under the LGPL3 licence.
Currently we are focused on Illumina data from GA1 and GA2 instruments but the final intention is to process ABI SOLiD
and possibly 454 data as well. The first question people ask is usually “why are you doing this?”. There are lots of good
reasons, the first is that the primary data analysis tools supplied by the instrument are not currently available under open
source licences and their algorithms are not widely documented. The primary data analysis itself can introduce biases (for
example optical duplicates, or biases toward a particular base call), it’s therefore important to know how your primary
data has been processed on its way to becoming a base call. A second and related reason is as a platform for future
research efforts, the image analysis and base calling problems are far from trivial and as we’ve seen with microarrays it has
been beneficial to view primary data analysis as a research problem. At the moment if you want to try a new background
subtraction method you will either not be able freely distribute your modifications (in the case of the Illumina pipeline)
or not even have the source code to modify (in ABIs case). That’s where Swift comes in, you can change the algorithms
with relative ease and release your work under a GPL style licence, that’s better for the users and better for the scientific
community as a whole.

1

Chapter 2

Running Swift

Right now Swift processes Illumina data, ABI data shouldn’t be too much of a leap for it (the images look very similar).
It operates on a single tile at a time and you’ll need to add scripts to run it over a full runfolder and parallelise it on
a cluster. Swift has been developed on Linux, it’s written in C++ and uses the GSL and FFTW libraries, consult your
distribution documentation on installation instructions for these packages (you’ll need gsl, gsl-dev and fftw3/fftw3-dev).

The first step is to check Swift out from the subversion repository:

svn co https://swiftng.svn.sourceforge.net/svnroot/swiftng/trunk

To build it simply type make swift that will build Swift using g++, there’s also a make swift intel target, which
uses the intel compiler and OpenMP. The make files need a lot of work, if anyone is interested in setting up automake for
us we’d welcome your contribution. Now you’ve build swift you can run it, here’s the standard output:

Swift

img-a : A images filenames list

img-c : C images filenames list

img-g : G images filenames list

img-t : T images filenames list

intfile : Load for Solexa style intensity file, instead of performing image analysis

non-pf : Non-PF fastq file

pf : PF fastq file

ref : Reference sequence for alignment (optional)

report : Report file

sigs : Signals file (optional)

tag : Tag to write at the top of the report, for example Run ID, lane and tile (optional)

Where <X Images> is a line delimited list of tile images, in cycle order.

Note: This binary processes a single tile at a time

Swift can be run in two modes. In the first it runs as a basecaller only. That is to say it doesn’t perform any image
analysis but processes the intensity files produced by the Solexa pipeline. The following command would run Swift on an
intensity file and write of fastq files, it would also align the reads against PhiX 174 to produce an error rate:

./swift --intfile s_1_1_int.txt --pf pf_1_1.fastq --non-pf nonpf_1_1.fastq --tag IL1_1023_1_1 --report runreport.xml

Swift also contains a native image analysis component, this currently excepts files which contain lists of image files to
process, we’ve done it that way so that if the run folder format changes we can just rewrite our driver scripts. There’s a
simple bash script called runswifttile included which I use to run Swift on single tiles. You can run it as follows:

2

./runswifttile MYRUNFOLDER <lane> <tile> <TAG>

MYRUNFOLDER should point to the runfolder you wish to process (contains an Images subdirectory). ¡lane¿ and
¡tile¿ and the lane and tile number to process. ¡TAG¿ is a tag to place in the fastq, run reports, and files that will but
output. So for example:

./runswifttile /staging/080000IL5_1500 1 1 IL15_1500_1_1

Would run swift on the runfolder at /staging/080000IL15 1500 on lane 1, tile 1. It will dump fastq files in the current di-
rectory at pf.IL15 1500 1 1.fastq and nonpf 1500 1 1.fastq. It will also create a runreport called runreport.IL15 1500 1 1.
Right now this script also aligns reads against phiX using a brute force aligner (similar to phageAlign). You will obviously
need to hack this for running in production, Tom Skelly at the Sanger Institute should be able to help you with this.

Swift writes out 2 fastq files, one for “PF” data the other for “non-PF” data, Illumina filter all their reads based on
signal ambiguity and we use the same metric in Swift (this is described in the algorithms section.

3

Chapter 3

Algorithms

The primary data analysis occurs in two phases, image analysis and base calling. Images analysis identifies individual
clusters of DNA in the images, maps these clusters between sets of images (across cycle and for illumination under different
lasers/filters) and extracts intensities from these clusters. The result is therefore a set of sequence of intensities, one for
each cluster, across cycle and for each of the 4 channels.

3.1 Image Analysis

A raw Solexa/Illumina image is shown in figure ??. Illumina image sets are broken down in to tiles, a tile is simply a
region of imaging on the flowcell. Each tile as a set of images associated with it, 4 images for every cycle of chemistry.

3.2 Offset calculation

While these images cover the same general region they are slightly offset against each other. These offsets come for two
sources. Firstly the stage has moved between cycles and the alignment will not be absolutely accurate when we perform
subsequent imaging. There is therefore an offset which differs across cycle within each channel. Secondly because imaging
has occurred under two lasers and two different filters the optical path for the different imaging frequencies is different.
There is therefore a constant offset between each channel. The first problem is therefore to bring all these images in to
alignment. We first compensate for the offset due to stage movement within each channel, then the cross-channel offset.

Images are thresholded to identify clusters, they are then cross-correlated within each channel (A,C,G and T) this is
performed using an FFT (phase correlation). Thresholding is based on a window around each pixel within the image, the
maximum value within this window is found and the threshold is set at a faction of this, for example, if the current pixel
is within 0.7 of the maximum pixel in a 6 pixel window it will be set to 1 in the threshold image.

Offsets are calculated on a “sub-image” bases, currently Swift is using 4 “sub-images” (the original image is divided in
to quarters). The offset of each of these is calculated independently. Further to this, these “sub-images” are divided in to
“sub-sub-images”. “sub-sub-images” are used to make the offset calculation robust, the median value of “sub-sub-image”
offsets is used for the “sub-image”. A sub-imaging offset calculation is being used until we can accurately determine
the transformation caused by the instrument optics. It is important note that while the optical track differs between
lasers/filters, the offsets within each channel will remain the same (and are simply due to stage movement). To make the
offset calculation robust we therefore take the median offset of all channels for a given cycle/subimage.

At this point images within each channel should be correctly aligned. We now need to bring them in to alignment
between channels. For each channel an aggregate image is created, this is simply the sum of all the images within that
channel. This should for a normal genomic sample contain all the clusters on the tile. These aggregate images are then
correlated against each other, again using sub-images. The offsets found are add to the channel offsets to create the
resulting offset maps which are applied to the images.

4

3.3 Background Subtraction

Background subtraction is performed using morphological opening. This simply finds the minimal pixel within a window
around each pixel and subtracts that value. As the minimal pixel is almost certainly at the image background level this
provides a conservative estimate of the background.

3.4 Segmentation

The image is again thresholded using the method described in the offset calculation. However different parameters are
used here. In the current implementation a extremely harsh thresholding method is used, this results in a large number
of “optical duplicates”, that is duplicates that really come from a single cluster. Optical duplicates are also present in the
Illumina image analysis, but at a lower level. To a degree the extent to which they are present is dependent on cluster
density. This is an area which requires improvement in Swift.

Clusters are extracted from thresholded images as groups of connected foreground pixels, they are stored in run length
encoded form.

3.5 Registration

Registration first takes place within each channel and then across channel. Registration simply overlaps clusters, between
current and subsequent cycles. If a cluster is found which does not overlap with one is a previous cycle it is added
(“backfilled”) to previous cycles. If a cluster does not overlap with anything in a subsequent cycle a dummy cluster is
registered at its previous location. Clusters are currently only “backfilled” up to cycle 6 (this can easily be changed in the
code). After channel registration, cross-channel registration occurs similarly overlapping cluster between channel.

3.6 Intensity Extraction

At this point each cluster as a position in all cycles and channels. Intensities are now extracted, the maximum intensity
within the cluster of each cycle/channel is simply found. An intensity sequence for each cluster is therefore produced.

5

Chapter 4

Basecalling

Basecalling Illumina data is not straight forward as a number of artifacts remain in the data. These artifacts have 5
sources:

1. Crosstalk: Overlap in dye response between channels.

2. Phasing: Multiple or non incorporation of labelled bases.

3. Mixed Clusters: Clusters which are grown from more than one DNA template.

4. Sticky T: Build up of the T dye on the flowcell (not present in revised chemistry).

5. Signal Loss.

Corrections exist for the first 4 artifacts, unfortunately there is nothing that can be done about signal loss (in data
analysis) and this is a significant limiting factor read length.

4.1 Crosstalk correction

The first correction we apply is for crosstalk between the dyes. The dye response simply overlaps, this means that if the
A dye is attached to a molecule not only will it illuminate in the A channel, but also a little in the C channel. With the
current Illumina chemistry the overlap is between the A and C channels and G and T channels. Errors are consequently
biased between these bases.

There is a simple correction for crosstalk which comes from capillary sequencing and is due to Lee (et al) [?]. It is
simple to visualise this method as putting regression lines though pairwise plots of intensities and using the slopes of these
lines to derive a correction matrix. This is the method we use is Swift and that is also employed by the Illumina pipeline.
In Swift the crosstalk matrix is derived from the first cycle and applied to all cycles. The first cycle is used because this
is the only cycle where crosstalk does not become convolved with “phasing”.

4.2 Normalisation against signal median

The intensities are re-expressed as a deviation from the median in this channel/cycle. The median should provide a fixed
reference point, invarient to the build up for background signal.

4.3 Phasing correction

Phasing is the non-incorperation or multiple incorporation of labelled bases. The result manifests itself as a kind of
cross-cycle crosstalk. That is if you measure the cycle 2 intensity you will have contributations from the true position 1

6

and position 3 bases. In Swift phasing is compensated for itteratively. We first examine the cycle 1 intensity where a
given base was “called” (had the highest intensity) we compare these to the cycle 2 intensities where this base was not a
call (not the brightest intensity). The faction of the intensity that is incorperated into the “non-calls” is calculated. This
is then used to correct all bases. That is to say for all bases we subtract this fraction of the cycle 1 intensity from cycle 2.
This compensates for forward crosstalk (phasing), that is the non-incorperation of a base in molecules of this cluster. A
reverse calculation is also performed to compensate for multiple incorperation (“pre-phasing”). Not only are the adjacent
bases compensated for, but all bases, using successively smaller fractions. Once the correction has been applied to cycle
1, it is then applied to cycle 2 and so on.

There is a limit on phasing, we currently assume that any faction over 0.5 is a miss calculation, we therefore only
apply a correction up to a maximum of 0.5. Because of this a single phasing correction pass does not compensate for all
the phasing. Three phasing passes are therefore currently used.

NOTE: I realise this section needs much clarification, helpful emails and questions are welcome: new at sgenomics dot
org

4.4 Purity Filtering

Purity filtering isn’t really a correction but it is designed to remove mixed clusters. Mixed clusters are those that have
formed from more than one template, two fragments of DNA have simply attached themselves to the flowcell at almost
adjacent positions. The cluster therefore represents sequence from both these templates resulting in bright peaks in more
than more channel. Purity filtering discards these mixed clusters.

So called “Chastity” purity filtering is used. Chastity is defined as the ratio of the largest intensity to the sum of
the largest and second largest intensities. If this value falls below a certain threshold over the first 12 bases the read is
discarded.

4.5 Basecalling

After these corrections and filter have been applied basecalling can occur, the maximal intensity in a given cycle is used
as the base call. Quality values are assigned based on the purity of the base scaled over a reasonable range. It appears
that this provides a better indicator of quality than the Illumina raw quality scores, however no systematic evaluation of
these scores has been made.

7

